
Ark: An Open-source Python-based Framework for
Robot Learning

Magnus Dierking1, Christopher E. Mower2,⋆, Sarthak Das2, Huang Helong2,
Jiacheng Qiu1,2, Cody Reading2, Wei Chen2,3, Huidong Liang2,4, Huang Guowei2,

Jan Peters1, Quan Xingyue2, JunWang5,⋆, HaithamBou-Ammar2,5,⋆

1 Technical University of Darmstadt 2 Huawei Noah’s Ark 3 Imperial College London
4 University of Oxford 5 University College London

⋆ Corresponding authors: {christopher.mower,
haitham.ammar}@huawei.com, jun.wang@cs.ucl.ac.uk

Abstract: Roboticshasmade remarkablehardware strides-fromDARPA’sUrbanand
Robotics Challenges to the first humanoid-robot kickboxing tournament-yet com-
mercial autonomy still lags behind progress in machine learning. A major bot-
tleneck is software: current robot stacks demand steep learning curves, low-level
C/C++ expertise, fragmented tooling, and intricate hardware integration, in stark
contrast to the Python-centric, well-documented ecosystems that propelled mod-
ern AI. We introduce Ark, an open-source, Python-first robotics framework de-
signed to close that gap. Ark presents a Gym-style environment interface that al-
lows users to collect data, preprocess it, and train policies using state-of-the-art
imitation-learningalgorithms (e.g., ACT,DiffusionPolicy)while seamlessly toggling
between high-fidelity simulation and physical robots. A lightweight client–server
architecture provides networked publisher-subscriber communication, and op-
tional C/C++ bindings ensure real-time performance when needed. Ark ships with
reusable modules for control, SLAM, motion planning, system identification, and
visualization, along with native ROS interoperability. Comprehensive documenta-
tion and case studies-from manipulation to mobile navigation-demonstrate rapid
prototyping, effortless hardware swapping, and end-to-end pipelines that rival the
convenience ofmainstreammachine-learningworkflows. By unifying robotics and
AI practices under a commonPythonumbrella, Ark lowers entry barriers and accel-
erates research and commercial deployment of autonomous robots.

A long-standing goal for the robotics community has been to move robots out of con-
trolled laboratory environments and deploy them commercially in the real world. There
have been several impressive demonstrations over the years of robots operating in chal-
lenging environments, such as: the 2007 DARPAUrban Challenge, devised to improve self-
driving vehicles that can navigate busy city streets and interact safely with other cars in real
time; the 2015 DARPA Robotics Challenge, created to develop semi-autonomous ground
robots able tohandle intricate tasks inhazardous, human-built environments; and, in2025,
the world’s first humanoid-robot kickboxing tournament showcased the impressive hard-
ware capabilities ofmodernhumanoid robots. Despite these, successful commercial appli-
cations of robotics are primarily found in car manufacturing, with little to no autonomous
capabilities and relatively small domestic applications of autonomous robot vacuums and

1

ar
X

iv
:2

50
6.

21
62

8v
2 

 [
cs

.R
O

] 
 1

4 
Ju

l 2
02

5

https://arxiv.org/abs/2506.21628v2


hotel delivery robots.
Although robot hardware has advanced in recent years, the robot’s ability to reason ef-

fectively in real-world environments remains a significant challenge. Machine learning so-
lutions are generally considered by many to be the most promising avenue to resolve this
issue. Therefore, many recent works focus on the integration of machine learning meth-
ods into robotic workflows. A key contributing factor to the success of machine learning
is the abundance of Python-based high-quality open-source software. On the other hand,
software for robotics is far more complex, requiring in-depth knowledge in several fields.

Robotics software has undergone significant evolution over the past several decades,
yet it remains considerably more complex and fragmented than in fields such as machine
learning. To understand the current challenges in robotics software development, it is use-
ful to consider how robotics software has evolved. Early industrial robots in the 1960s were
programmedvia record-and-playbackmechanisms,withnoreal softwareabstraction [1, 2].
Around the same time, academic robotics began exploring software-controlled systems:
Shakey [1], for example, integrated symbolic AI planning, hierarchical control, and sensor
feedback using LISP-based programs. The 1970s and 1980s saw the introduction of someof
the first high-level robot programming languages (e.g., WAVE, AL, and RAPT) [2, 3], along
with real-time embedded systems that enabled robots to respond to their environments.
These developments improvedmodularity and sensing integration butwere still limited by
hardware specificity and lack of standardization.

In the 1990s, hybrid architectures combining deliberative planning and reactive con-
trol became more common, supported by libraries like the Robotics Toolbox [4]. This laid
the groundwork for the 2000s emergence ofmiddleware such as Player/Stage [5] and even-
tually ROS [6], which standardized communication and hardware abstraction across re-
search platforms. Despite these advances, robotics software today remains complex and
fragmented—often requiring extensive C++ programming, specialized hardware drivers,
and manual integration of learning components. Unlike machine learning frameworks,
robotics lacks unified, Python-first tools that seamlessly support data collection, policy
training, simulation, and deployment.

Over the past few decades, artificial intelligence has seen several significant advances,
such as the advent of deep learning [7, 8] development of architectures such as convolu-
tional and recurrent neural networks [9, 10], andmore recently a class of models known as
transformers have enabledmany impressive results in a variety of fields such as image and
natural language generation [11–13]. Due to the successes in other fields deep-learning
has also shifted robotics research away from traditional model-based approaches [14, 15]
and towards robot learning [16, 17]; see reviews by Kroemer et al. [18], Xiao et al. [19],
Billard et al. [20].

High-quality, well-documented software frameworks–PyTorch [21], Scikit-learn [22],
OpenAI Gym [23] and TensorFlow [24]–are one of the primary factors contributing to the
success of machine learning: they are routinely used to teach university courses, drive the
bulk of AI research output and power large-scale commercial products such as ChatGPT.
Withonly amodest laptop, anewcomer can train their first neural network inunder anhour
by following the PyTorch quick-start tutorial, yet the same library also scales to the world’s
most advancedmodels [12, 13]. Although all of these frameworks can runonaCPU, serious
work usually demands specializedGPUhardware, and transferring data between devices is

2



typically as simple as changing a single argument (e.g., the device flag in PyTorch). The
seeming ease of swapping hardware, however, hides a crucial caveat: in practice the target
hardware device is almost always an NVIDIA GPU running CUDA and cuDNN. Alternative
back-ends exist but remain less mature, and the ubiquity of the CUDA software–hardware
stack has become so pronounced thatmany research projects and industrial pipelines now
assume its presence by default [25]. This de-facto standardization has accelerated progress
by letting researchers write portable code and cloud providers offer uniform, highly opti-
mized GPU instances at scale [26, 27].

In contrast to the relative ease of developing and deploying machine learning applica-
tions, the development anddeployment of robotics software is significantlymore challeng-
ing for a variety of reasons–though this list is bynomeans exhaustive. (C1) Popular software
frameworks for robotics (e.g., ROS and Orocos) require steep learning curves for novice
users, generally due to lack of documentation [28], and are not readily integratedwith tools
for robot learning (e.g., data collection and processing, model training, and deployment).
(C2) Unlike most machine learning packages–where you can build your application using
entirelyPython–roboticsdevelopment still typically requires knowledgeofCandC++. Most
foundational robotics libraries exist only in those languages, exposing their functionality
from Python requires skill with binding tools such as pybind11, Cython, or SWIG (among
others). (C3) Robotics involves integrating a diverse range of hardware components–such
as actuators, sensors, wheels, and onboard computers–each of which typically requires a
custom driver interface or specific communication protocols, making it difficult to set up
and switch between high-fidelity virtual simulations of custom robot setups. (C4) Devel-
oping robot systems require large teams with knowledge in many different fields such as
control theory, kinematics and dynamics, motion planning, computer vision and percep-
tion, signal processing, machine learning, and electrical andmechanical engineering [29].

To address these challenges, wepresentARK1—aPython-based robotics framework that
is designed to accelerate development and prototyping, and enable users to deploy new
methods on both simulated and real world robots. ARK is designed to integrate effortlessly
with standard machine-learning workflows: it lets you gather data from simulators or real
robots, preprocess it, and train policies with state-of-the-art imitation-learning methods
such as ACT and Diffusion Policy. The main user-interface is designed based on the Ope-
nAI Gym to make it familiar for machine learning researchers, and also so it integrates
with commonmachine learningworkflows (e.g., imitation learning). Additionally, we use a
client-based systemwhere various Python nodes can communicate over a network using a
publisher-subscriber architecture. AlthoughARK is designedas aPython-first framework, it
also shipswith utilities for exposingC/C++ functionalitywhenperformancematters. Com-
prehensive documentation and several examples show how ARK can be installed, setup,
and deployed in simulated and real robot setups. For advanced users, ARK exposes native
ROS bindings, allowing seamless integrationwith existing ROS codebases. Beyond the core
environment interface, Ark provides reusable modules for low-level control, data collec-
tion, visualization, system identification, and mobile-base navigation. Several real-world
and simulated case studies illustrate Ark’s flexibility and ease of use. In this paper, we pro-
vide anoverviewof our proposed framework calledArk, outlining thedesignprinciples that
shaped its development and detailing its core capabilities. We then demonstrate Ark’s ver-

1Code available at https://robotics-ark.github.io/ark_robotics.github.io.

3



satility through extensive use-cases that give details on how to setup several examples and
demonstrate the ease in which one can switch between simulation and the real robot sys-
tem, various data-collection strategies for imitation learning, policy training with several
established imitation-learning algorithms, map building via SLAM and motion planning
for mobile robots, and finally we provide several embodied AI demonstrations.

Framework Overview
Machine learning, based on deep learning, has emerged as one of themost promising and
effective approaches to enable intelligent robots to complete complex reasoning tasks. Al-
though numerous studies report encouraging demonstrations, these systems have yet to
progress beyond controlled laboratory settings into real-world deployments. A key limit-
ing factor in this line of research is that there lacks a clear consensus on what constitutes
an appropriate system architecture for embodied AI [30]. So far, recent works have largely
converged on three alternative architectures. The first approach assumes a library of pa-
rameterized skills executable by the robot, with an LLM or VLM selecting the appropriate
skill at eachenvironment step [31, 32]. A second, trains aVLAmodel typicallybyfine-tuning
a VLM to output directly actions that are executed on the robot [17]. A third, uses a VLA or
VLMtooutput action tokens in some latent spacewhichare thenmappedbyanother (often
smaller) model to robot control actions [33]. Moreover, for each architecture setup, there
alsoexistmanyproblemsaround training thesemodels (e.g, scalingdata collection, sim-to-
real, generalization) and deploying the results on real hardware. In order to promote future
research in embodied AI, Ark has been designed in such a way that is aligned with typical
machine learning workflows and enables users to easily prototype novel architectures and
deploy them on physical robots.

We have implemented Ark with three core design philosophies in mind. (D1) We de-
sign Ark’s user interface to align with well-known machine learning libraries. Robotics in-
herently demands expertise from a wide range of disciplines. With the growing influence
of machine learning in the field, many researchers and engineers specializing in machine
learning are now focusing on its deployment in robotic systems. However, robotics soft-
ware still lacks the maturity and standardization seen in machine learning libraries, mak-
ing development and adoption more difficult. Ark aims to bridge this gap by offering a
more familiar and accessible interface for those coming from a machine learning back-
ground. (D2) Developing and testing novel methods on real robots introduces a range of
safety concerns; particularly when developers are in close proximity to the physical sys-
tems, as is commonly the case in robotics laboratories worldwide. While simulators pro-
vide a valuable environment for early-stage development, they often differ significantly in
architecture from real-time, event-driven robotic systems. As a result, transitioning from
simulation to physical deployment can be cumbersome and error-prone. Ark is designed
to reduce this barrier by enabling seamless switching between simulated and real-world
environments. (D3) Python is arguably the most used programming language in machine
learning, and it is widely regarded as significantlymore user-friendly than languages like C,
C++, or Java. In addition, Python boasts a vast ecosystem of well-maintained libraries and
packages,making it an ideal choice for rapid development and experimentation. We there-
fore have developed Ark with a Python-centric focus. We acknowledge that in some cases,

4



Figure 1. Ark uses a unified configuration file to define action and observation channels,
which are then instantiated within a distributed node-based network. This architecture
supports both real and simulated hardware through interchangeable drivers and identical
communication interfaces. The Ark Registrymanages active nodes, while each component
(e.g., sensors, actuators, policies) operates as an independent process. As a result, pipelines
developed in simulation can also be used on physical systems without code modification,
ensuring a consistent sim-real interface.

5



robot software is required to operate at high frequencies that is challenging for Python to
handle (e.g., low-level controllers for dynamic tasks such as locomotion). In these cases, we
offer a range of tools that help users to expose C/C++ code to Python.

The key aspects of the Ark framework are shown diagrammatically in Figure 1. The fol-
lowing sub-sections provide an overview of themain features of Ark.

Ark Network
A fundamental software design principle is modularity, which promotes maintainability,
code re-use, and fault isolation [34]. A robot system can be divided into specialized tasks
suchasdataacquisition, stateestimation, taskplanning, andcontrol. Thesystem’smodules
must communicate and exchange information to achieve these tasks. Modern operating
systems facilitate this by enabling each module to run as a separate software process and
communicate across a network, either on the samemachine or distributed across different
devices. Modularity and inter-process communication has been a long-standing practice
in robotic software design [6, 35, 36].

Message channels Ark uses a publisher-subscriber asynchronous message passing sys-
tem for interprocess communication. In the Ark Network (see the central part of Figure 1),
each node represents a Python script running in its own process. These nodes are each
given a unique name and communicate with one another through messaging channels.
Messages are transmitted across channels, allowing nodes to exchange information within
the network.

The Ark Network is created programatically, each Python script implements a class that
inherits from the BaseNode class. Communication between nodes is established by call-
ing the create_publisher and create_subscribermethods. The user can choose an
appropriate name for the messaging channel and define it with a string. The full channel
name is then given by NODE_NAME/CHANNEL_NAME where NODE_NAME is the name of the
node and CHANNEL_NAME is given by the user.

The Ark Network low-level communication model is designed to be modular, allowing
different networking libraries to be easily swapped out. Currently, Ark uses the Lightweight
Communications and Marshalling (LCM) library [37] as its backend for network commu-
nication. LCM is a middleware system with support for multiple programming languages.
WechoseLCMfor its lightweight design and its built-in tools for data collection, debugging,
and introspection.

Themodularity of our implementation of networking infrastructure is valuable, as it al-
lows us to easily adapt the low-level networking layer to suit different design goals in the
future, depending on research directions pursued by us or the broader community. In
future versions of Ark, we plan to support distributed training and potentially inference
for backpropagation-basedmodels, enablingmore advancedmachine learning workflows
across networked nodes; such a goal can not be easily and efficiently handled by LCM in its
current implementation.

We follow the LCM type specification language to define message types; i.e., each
message channel is defined by a name and a message type. We provide a library called
ark_types containingmanymessage types common to robotics (e.g., a joint_state_t
type or a transform_t type).

6



Another advantage of using LCM is its ability to facilitate integration of low-level lan-
guages such as C, C++, or Java into the Ark framework. Since nodes in Ark communicate via
LCMmessaging channels, scripts written in alternative languages can interact by utilizing
the standard LCM publisher/subscriber interface to communicate over the network. This
approach can be useful in scenarios involving hardware devices–such as haptic interfaces–
that are only accessible through C/C++/Java APIs provided by the manufacturer. In such
cases, the user can expose the device to Ark by implementing the appropriate LCM pub-
lishers and subscribers. However, due to Ark’s architectural design for coordinating be-
tween simulation and real-world environments (discussed later), using LCM as a bridge
between alternative languages and Python may not always be the best choice. To address
this, and recognizing that C/C++ are the dominant languages in hardware development,
Ark also provides a set of tools and helper functions/classes to assist users in directly ex-
posing C/C++ functionality to Python.

Services Asynchronous communication is not always suitable for all tasks. To address
this, Ark provides a request-response mechanism known as services. This pattern ensures
a clear association between requests and responses, making it ideal for operations that re-
quire acknowledgment–for example, triggering a calibration routine on a robotic arm. Ark
services use the LCMmessage type specification for request and response types, allowing
them to be selected dynamically. Similar to message channels, Ark services can be identi-
fied by a name, chosen by the user to suit the desired task.

In order to connect services over the network, Ark includes a central registry, that acts
as a lightweight coordination and discovery hub. Information about the network can be re-
trieved (e.g., active services fromothernodes) andenables various features suchas runtime
visualization and fault isolation. The registry has default service names, these are identified
in list of services by the __DEFAULT_SERVICE. The Ark registrymust be run by the user be-
fore the Ark Network can be established by other nodes.

Launcher As illustrated in Figure 1, multiple nodes can be executed and connected to
form the overall Ark Network. Each node can be launched individually by starting its cor-
responding Python script from the terminal. However, manually launching a large number
of processes can become cumbersome and error-prone. To address this, Ark provides a
launcher utility that allows users to define the entire Ark Network within a single configu-
ration file using the YAML format. This launcher script can then be executed once from the
terminal to automatically start all specified subprocesses, simplifying the initialization of
complex network setups.

Observation and Action Channels
We adopt the standard terminology from the reinforcement learning literature, referring to
observations and actions as follows. An observation is information received from the en-
vironment, typically taken from sensors such as cameras or joint encoders. An action is a
control signal or decision variable that influences the environment, for example by speci-
fying joint velocities sent to a robot’s actuators.

To promote ease of use and reduce the learning curve for users familiar with machine
learning, Ark provides an interface inspired by the well-known OpenAI Gym (now Gymna-

7



sium) library. An environment class implements areset function,which returns anobser-
vation and an information dictionary. Also a step function is given that accepts an action
as input and returns the next observation, a reward, termination and truncation flags, and
an information dictionary.

We define observation and action spaces each by a collection ofmessage channels run-
ning on the ArkNetwork. Each space is defined in the constructor of the environment class
using a dictionary whichmaps themessage channel name to it’s type. Observation and ac-
tion space classes are initializedas class attributes for the environment class that bothauto-
matically handle communication with the Ark network: the observation space subscribes
to each channel, whereas the action space publishes to each given channel. By allowing
the user to choose the observation/action spaces enables them to easily prototype differ-
ent input/outputs for their policymodel architecture. Also, eachchannel in theobservation
space,maybepublished at different sampling frequencies. Eachobservation returned thus
contains themost recent message recieved on each channel.

Real World and Physics Simulation
As outlined in our three core design philosophies, the second principle (D2) focuses on en-
suring that Ark can seamlessly operate across both real and simulated environments. This
section provides further details on how this is achieved, including an overview of how Ark
interfaces with various simulators.

Sim-Real switch A key capability of Ark is its ability to easily switch between simulated
environments and real-world robotic systems using a single configuration flag, i.e., sim =
True, False. This is made possible by Ark’s distributed, node-based architecture, where
each robot and sensor–whether physical or simulated–is implemented as an independent
computational node. Ark distributes the physics simulators, using a configuration file as
seen in Figure 2, which takes the chosen simulator and internally spins up nodes tomimic
the interface fromareal system. This ensures consistencyacrossdeploymentsandenabling
transparent switching between them. Further details on hardware drivers are provided in
the following section.

Simulator backend There aremany physics simulators available to the robotics commu-
nity, however theredoesnotexist a single simulator thatperformsbest inall desired features
for all domains [38]. Each simulator is typically developed for a specific purpose or with a
certain application inmind, e.g. manipulation,medical,marine, soft robotics, locomotion,
etc. Therefore, instead of directly interfacing with a single simulator, we instead provide a
simulator backendwhich enables users to integrate, in theory, any simulator theywish that
fits their need. Currently, Ark supports PyBullet andMuJoCo due to their popularity inma-
chine learning. In futurework, we plan to integrate IssacSim, andwill consider suggestions
from the community.

The choice of backend used, as well as the switch between simulated and physical sys-
tems, is entirelymanaged through Ark’s configuration infrastructure. Bymodifying a single
YAML file, users can define the desired setup (e.g., real/sim and if sim then which simula-
tor), and Ark will automatically initialize the appropriate drivers, ensuring consistentmes-
sage schemas, channel names, and execution flow.

8



Figure 2. Technical diagram illustrating howArk uses a unified configuration file to instanti-
ate a distributed simulated system that mirrors real-world deployments. The YAML-based
configuration specifies robots, sensors, environments, and networking parameters, which
theArk Simulator parses to launch corresponding simulatednodes. Each component, such
as robot controllers, cameras, and sensor emulators, runs as an independent process, com-
municating through the samemessage passing protocol used in real deployments. This en-
sures that policies and pipelines developed in simulation operate identically when trans-
ferred to physical hardware, facilitating seamless sim-to-real transitions and reproducible
experimentation

9



Robot and Sensor Drivers
While Ark provides some structure in its user interface (i.e., Gym-like interface as discussed
above), it is very extensible and we have designed Ark with broad comparability across
robots and sensors in mind. Recently developed frameworks such as LeRobot [39] and
PyRobot [40], target only specific robot embodiments, Ark on the other hand is design to
ensure that a wide range of hardware can be easily integrated. We enable generalizability
across hardware by providing several interfacingmethods.

Python drivers We provide an abstract Python base class, ComponentDriver, designed
to standardize the integration of hardware components with Ark. To implement a driver,
users create a subclass and override standard abstract methods such as get_data (for
sensors) and send_command (for robots). Each driver integrates with Ark’s global sim-real
switch, automatically routing messages to either real or simulated hardware based on the
global configuration settings.

C++ drivers As mentioned above, programming in C/C++ is sometimes necessary in
robotic systems. For instance, certain hardware components provide only C/C++ inter-
faces, and insomecases, highsampling frequenciesare required for real-timeperformance,
such as in locomotion control. To support these scenarios, we provide a set of tools written
in C++ using the pybind11 library, enabling users to expose their hardware components
to Ark. These tools ensure that hardware components with only C++ interfaces can be in-
tegratedwith Ark in a consistentmanner, following the same conventions as Python-based
drivers.

ROS-Ark driver Arguably, ROS is the most widely used robotics platform today, with
many research groups and developers around the world relying on it to build their robotic
systems. In fact, some robots (e.g., ViperX arms) are only supported via manufacturer-
provided ROS interfaces. To enable integration with the ROS ecosystem, Ark includes a
ROS-Ark driver that facilitates bidirectional communication between ROS topics and Ark
message channels. This allows users to run existingROS setupswhile simultaneously lever-
aging Ark’s interface, without requiring any modifications to the original ROS codebase.
Moreover, the driver serves as amigration tool, helping users transition their existing ROS-
based systems toArk. Currently, basedonour experience thatmost research labs (including
our own) continue to use ROS 1, the ROS-Ark bridge supports only ROS 1. Support for ROS
2may be considered in the future, depending on user demand.

Tools for Introspection and Debugging
Robot systems are often complex and rely on many intercommunicating processes. As a
result, having a comprehensive suite of debugging tools, visualized in Figure 3, is essential,
enabling users to efficiently investigate and resolve issues as they arise.

Ark Graph The Ark Graph tool offers a real-time visual representation of all active nodes,
their published and subscribed channels, and available services.

10



Figure 3. Graphical debugging tools provided by Ark. Ark Graph displays active nodes and
their communication channels for network analysis. Ark Viewer renders live image streams
to support camera calibration and inspection. Ark Plot visualizes real-time numerical data
on any channel, aiding in systemmonitoring and debugging.

Ark Plot Ark Plot is a real-time plotting tool for visualizing numeric data on Ark message
channels. It allows users to monitor the evolution of variables over time, making it useful
for tasks such as tuning control parameters, diagnosing sensor behavior, and debugging
system performance.

ArkViewer ArkViewer enables real-time visualization of image data transmitted over any
LCM channel, making it especially valuable for configuring, monitoring, and debugging
camera systems.

LCM Tools Another reason LCMwas chosen as the communication library is the suite of
built-in tools it offers for debugging and introspection. For example, lcm-spy is a graph-
ical tool for viewing messages on an LCM network. Similar to network analysis tools like
Ethereal/Wireshark or tcpdump, it allows users to inspect all received LCMmessages and
provides detailed information and statistics on the channels in use (e.g., number of mes-
sages received, message Rate in Hz, and jitter inms).

Use Cases
In this section, we provide an overview of several use-cases for our proposed framework.
These use-cases illustrate the ease of using and setting up Ark for multiple situations com-
mon to robot learning. All code to reproduce these use-cases will bemade available.

Switching Between Simulation and Reality
Deploying learned robot policies in real-world scenarios can raise safety concerns. More-
over, many existing frameworks lack straightforward implementation pathways, resulting
in adhoc and inconsistent solutions that do not generalize well across different systems or
embodiments.

Ark addresses these challenges by providing a unified control interface built on
Python/C++drivers. It offers a configurable abstraction layer that enables seamless deploy-
ment of robotic policies across both simulated and physical environments. After defining

11



Figure 4. Seamless sim-real transition in Ark enabled by consistent observation and action
space definitions. The environment configuration specifies sensor inputs (e.g., joint states,
images) and actuator outputs (e.g., joint commands), which remain identical across both
simulated and real systems. By toggling a single flag (sim = True/False), Ark automatically
routes data through the different observation and action channels, allowing a single policy
pipeline implementation to operate in both domains without modification. This unified
interface simplifies development, debugging, and deployment across the sim-real bound-
ary.

12



Figure 5. lcm-logger enables efficient data collection for imitation learning by recording
demonstrations from a variety of control interfaces, including kinesthetic teaching, VR
teleoperation, and gamepad input (left). Each demonstrations is saved as a separate CSV
file (right), allowing users to accumulate diverse datasets across different input modalities
rapidly.

the environment (i.e, robot, sensors, objects), the user need only specify a single flag in the
configuration to switch between real and simulation, i.e., sim = True, False.

To demonstrate this facility, we implemented a pick-and-place task using a ViperX 300s
fixed-base robotic arm equipped with a parallel gripper at the end-effector. The robot was
tasked with picking an object and placing it onto a plate. The entire environment is spec-
ified by a single YAML file that defines object initial placements, camera and robot poses,
as well as physics parameters such as gravity. This configuration is used by Ark to setup
the physical environment (left part of Figure 4), and instantiate a simulation environment
where the scene geometry mirrors the real-world setup (right part of Figure 4).

In this example, the observation space is the current joint position command, and the
action space is the goal robot joint velocity command. A hand-crafted expert policy is used
in both the real world and simulation.

Crucially, transitioning the same policy to the real robot required no changes to code
or data structures–only the single configuration variable sim was toggled. Ark internally
reroutes communication from the simulated drivers to the physical hardware while pre-
serving the same observation and action channels. This abstraction ensures that all down-
stream code (e.g., the policy logic, environment wrappers, and logging infrastructure) re-
mains unchanged, facilitating direct deployment and reproducibility.

Data Collection for Imitation Learning
Learning policies using imitation learning requires large demonstration datasets. Data
collection typically requires humans to interact with the robot system to collect several
demonstrations of a collection of tasks [41].

Two primary methods can be employed to collect data from the system: kinesthetic
teaching and teleoperation. In kinesthetic teaching, the human physically interacts with

13



the robot to provide demonstrations (see the left part of Figure 5). This approach is gen-
erally considered intuitive for human operators [42] and is often preferred [43]; however, it
may raise safety concerns due to the need for direct physical contact with the system. The
second method, teleoperation, involves the human controlling the robot remotely via an
interface such as a virtual reality headset and controllers or a gamepad (central and right
parts in Figure 5). Teleoperation allows the operator to interact with the robot from a safe
distance, but it introduces challenges such as limited visibility [44] and difficulty in map-
ping controller inputs to the robot’s control dimensions [45]. As a result, effective teleoper-
ation often requires a skilled operator [46].

Due to Ark’s modular architecture and the use of distinct message types for each com-
municationchannel, settingupdata collectionpipelines is straightforward. This designen-
ables users to easily swap out different interfaces as needed. LCM provides a utility called
lcm-logger, which can be executed at any time to record data. It captures and writes all
messages published on LCMchannels to a log file. Ark includes built-in functionality to ex-
tractdata fromthese logfilesandconvert it intoCSV format. Moreover, byutilizing the same
observation and action space configuration defined in the environment class, the data can
be extracted in a format consistent with that used during deployment. Since messages on
different channelsmay be published at varying frequencies, Ark also provides tools to han-
dle this asynchrony. These tools allowusers to either interpolate the channel data or extract
themost recent message at each time step.

Kinesthetic Teaching

Ark supports learning from human-guided demonstrations through kinesthetic teaching
and also replay. Instead of deploying a pre-programmed expert policy, the ViperX 300s
robotic arm is manually guided through the task by the human physically interacting with
the system. During this process, the LCM logger records the channel data, capturing the
full trajectory of the demonstration as it is executed. We also include a camera in the setup,
whilst this is not used in the policy for this demonstration, it can be used to collect videos of
the robot setup. Note, theobservationandaction spaces remain the sameas in theprevious
section.

Once a demonstration is complete, the data is saved to a log file. This data can either be
processed for use in training an imitation learning policy, or replayed on the system using
the lcm-logplayer. This replay functionality allows the demonstration to be reproduced
exactly as it was performed by the human demonstrator. Such playback is particularly use-
ful in scenarioswhere thehumanappears in the camera frame–potentially introducingbias
or noise into vision-based policies–or when force-based interactions are involved. In the
latter case, it can be difficult to disentangle the forces that the robot should actively track
from those resulting fromphysical contact during thedemonstration. Additionally, wepro-
vide services to streamline environment resetting. For instance, users can link a reset ser-
vice to a keyboard button press, making repeated demonstrations or evaluations more ef-
ficient and user-friendly.

14



Figure 6. Sequential snapshots of a Viper X 300 s arm executing a learned diffusion policy.
The line overlay shows the sampled action trajectories converging toward the target object,
while the arm autonomously refines its actions at each timestep.

Teleoperation

Ark also supports teleoperation using input devices such as VR and gamepad controllers.
In one setup (central part of Figure 5), a user controls the OpenPyRo-A1 humanoid robot
by streaming, in real-time, 6-DoF poses from a VR controller over a local network. Using an
inverse kinematic controller, these are converted to joint velocity goals that are sent to the
robot actuators. A second setup (right part of Figure 5) has a similar architecture for the Ark
Network, however in this case a PlayStation4 controller is used as the interface that controls
the robot gripper pose.

Imitation Learning
In this section, we demonstrate several use-cases for implementing imitation learning.
Theseuse-cases focusonhow touseArk fordata collection, training, anddeployment. Also,
we highlight the effectiveness of using the OpenAI Gym (Gymnasium) interface with Ark to
allow easy adaptations to the policy. An overview of Ark’s data collection nodes are shown
in Figure 5.

We showcase twomethods for imitation learning: (i) diffusion policy, (ii) action chunk-
ingwith transformers, andArk serves as the central infrastructure, providingmodular com-
ponents, standardized interfaces, and real-time communication, all of which streamline
data collection and deployment of trained policies.

Diffusion Policy

First, we demonstrate deployment of a learned diffusion policy [16]. For this use case, a
ViperX300s robotic arm and an Intel RealSense RGB camera are configured to perform a
pushing task, shown in Figure 6. The observation space includes the robot’s joint positions
and a continuous RGB image stream from the camera. The action space consists of joint
position commands sent to the ViperX 300s.

Data collection is facilitated entirely throughArknodes as demonstrated in the previous
section, which operate as independent, reusable processes. In this setup, four key nodes
are deployed: a Controller Node for PS4 joystick input, an Environment Node that trans-
lates joystick commands into target end-effector poses, an Inverse Kinematics Node that
converts these poses into joint commands, and SensorNodes that publish RGB images and

15



Figure 7. Execution of an ACT-based policy on the OpenPyro humanoid robot for two dis-
tinct tasks: cloth manipulation (top row) and object handover (bottom row). The policy
produces precise, contact-rich behaviors that enable the robot to flatten a shirt and place a
banana into a bowl.

joint states. Because Ark enforces strict message typing and channel separation via LCM,
users can modify or replace nodes (e.g., switch cameras or use a scripted controller) with-
out rewriting the rest of the system. This modularity enables reuse across tasks, which is
particularly beneficial for research workflows where hardware configurations can change
or various interfaces can be swapped out for different contexts.

After each demonstration, the environment is required to be reset. When the user
presses the ‘X’ button on the controller, the trajectory is saved automatically, and the robot
resets to a neutral state. This mechanism is built directly into Ark’s service framework, en-
abling resets without requiring custom scripting. As a result, users can collect high-quality
demonstration datasets with minimal setup, and without needing to manage state transi-
tions or converting data formats manually.

Once the data is collected, Ark already specifies the observation and action space each
as a collection of channels. This same configuration is used to extract data form the log files
making it easy to implement data loaders in imitation learning training scripts.

Deployment within Ark replicates the data collection setup, easing engineering com-
plexity. The trained diffusion policy is loaded into a policy node within the same environ-
ment used for data collection, replacing the joystick controller node. The policy receives
the current RGB image and robot joint state from the observation channels and outputs the
target end-effector position. This target position is published as a command through the
same action channels used during demonstrations. Since the execution pathway remains
unchanged, users do not need tomodify the underlying infrastructure to test learned poli-
cies, Ark ensures a consistent system setup across training and deployment.

16



Figure 8. Using Ark’s integrated SLAM and visualization tools, a Husky robot equipped
with a LiDAR sensor navigates a kitchen environment. The robot first constructs an oc-
cupancy map using FastSLAM (center), facilitated by Ark’s modular data streaming and
map-building nodes. The final panel (right) shows an A* path generated within the oc-
cupancy map using Ark’s planning and rendering utilities. This setup demonstrates how
Ark enables end-to-end navigation workflows—from sensor integration and SLAM to path
planning and visualization—within a unified framework.

Action Chunking with Transformers

In addition to diffusion policy, we have also implemented a demonstration based on ac-
tion chunking with transformers [47]. For this demonstration, we use the OpenPyro-A1
humanoid platform [48] and teleoperate it with a virtual reality headset. Datawas collected
for two tasks, the first is clothmanipulation task (top row of Figure 7) and the second is ob-
ject handover task (bottom rowof Figure 7); snapshots in Figure 7 are from the videos of the
robot performing these tasks using the learned policies.

Mobile-base Robots
Many real-world tasks, such as inspection, require a robot to navigate to various locations
within an environment. To do this effectively, the robot must be able to both access a map
of the environment and determine its position within that map. This process is commonly
knownasSimultaneousLocalizationandMapping (SLAM),whichenables the robot to con-
struct amapofanunknownenvironmentwhile simultaneouslyestimating itsown location.
Once amaphasbeencreatedand the robot is accurately localized, planning algorithmscan
be employed to navigate the environment.

We have developed amobile robotics pipeline in Ark that implements a variant of Fast-
SLAM [49]. Using teleoperation to control the robot and data from its onboard LIDAR
sensor, we employ FastSLAM to construct a map of the robot’s environment. Once the
map is built, we apply the A* search algorithm for path planning, incorporating a distance
transform to maintain safe navigation margins between the robot and nearby obstacles.
A proportional-derivative (PD) controller then guides the robot through each waypoint,
translating the planned trajectory into low-level wheel velocity commands.

17



Map Building

Toconstruct a2Dmapof theenvironmentwhileestimating the robot’spose, a teleoperation
assisted SLAM pipeline was implemented using the Ark framework. The pipeline consists
of two primary subsystems: a teleoperation controller and a probabilistic SLAM module,
both implemented as Ark nodes that communicate over message channels.

The teleoperation node allows a user to control the robot by specifying desired linear
and angular velocities. These high level commands are published over an Ark action chan-
nel and received by the low level controller node, which computes the corresponding left
and right wheel velocities using differential drive kinematics.

Simultaneously, the LIDAR data and control signals are streamed to the SLAM node,
which fuses these inputs to estimate the robot’s pose and construct a map of the environ-
ment. TheLIDARdata are representedasN × 2arrays of polar coordinates (distance, angle)
centered at the LiDAR frame, while the control signals reflect the robot’s commandedmo-
tion. These data are consumed by a node running FastSLAM, implemented using a Rao
Blackwellized Particle Filter. Each particle maintains both a pose estimate and a local oc-
cupancy grid, with cells assigned probabilities between 0 (free) and 1 (occupied). Figure 8
illustrates Ark’s integration with SLAM for map building and navigation.

Navigation

Given amap of the environment and the robot’s pose within that map, the system can per-
form motion planning while avoiding obstacles. The A* search algorithm, a widely used
grid-based planning method, has been adapted for robotic motion planning and is imple-
mented in Ark, integrated with the map generated via SLAM. A* is particularly appealing
because it is a complete algorithm–meaning that if a valid path from the start to the goal
exists, A* is guaranteed to find it, provided the environment is discretized finely enough.

Upon receiving a goal position in world coordinates, the planning subsystem is trig-
gered. This node receives as input both the target location and the probabilistic occupancy
map produced during SLAM. To plan a safe and efficient trajectory, the planner first dis-
cretizes the occupancy map using a predefined threshold (typically 0.5) to distinguish be-
tween free and occupied cells. It then computes the distance transform of the grid to de-
termine, for each cell, the shortest distance to the nearest obstacle. This metric is used to
ensure that planned pathsmaintain aminimum clearance of at least half the robot’s width
plus a user-specified margin, reducing the risk of collision in narrow passages. The short-
est feasible path from the robot’s current location to the goal is computed using the A*
algorithm. The resulting trajectory is a sequence of Cartesian waypoints (x, y) that avoid
obstacles while maintaining smooth curvature and safety margins. To improve execution
efficiency, the raw path is then downsampled based on a user-defined spatial resolution,
reducing unnecessary intermediate waypoints and promoting smoother motion.

The control subsystem consumes both the planned path and the real-time pose esti-
mates from the SLAM node. Implemented as a PD controller, the system directs the robot
through each waypoint in order. For each waypoint, the controller first rotates the robot to
face the target using angular control, followed by linear control to advance toward it. Once
the current waypoint is reached within a defined tolerance, the next target is selected. The
controller outputs both linear andangular velocities, which are then converted into left and

18



Figure 9.Deep Seek integration with Ark Framework to allow the Viper to play board games

right wheel commands using differential drive kinematics.

Embodied AI
Large language models (LLMs) and vision-language models (VLMs) have been shown to
endow robots with impressive reasoning capabilities [31, 32]. Ark’s modular design and
Python-first architecture make it well suited for integrating large language models (LLMs)
and vision-language models (VLMs) as high-level policy selectors within robot control
loops; Python is the most common programming language used in machine learning. An
agentic system was implemented using the Viper robotic arm, in which high-level seman-
tic reasoning is performed by an LLM to perform reasoning tasks, shown in Figure 9. As
our base LLMwe use Deepseek-R1 [13]. The system implemented follows a code-as-policy
paradigm [50]: each roboticmanipulation skill–such as “pickpiece”, “place at location”, and
“remove object”–are implemented as a parameterized policy that is callable as a Python
function. These functions are exposed through a policy library, which the LLM selects from
based on task context and scene understanding in the prompt.

Each node in the Ark Network–scene perception, language-based reasoning, and mo-
tion execution–is encapsulated as a standalone node. DeepSeek is integrated as an Ark
node that exposes a service interface; the prompt is the request input and the output of the
LLM is returned as the service response. At each step of the policy is a decision event, the
perceptionnodepublishes scene observations (e.g., board state, object poses, RGB images)
to a shared channel. These inputs are then passed as a structured query to the DeepSeek
node via an Ark service call. The query includes the current state of the environment, a list
of available policy functions, and optionally, a task prompt expressed in natural language.
We tested Deepseek-R1 versus other LLMs (Qwen 2.5 and Llama 3) in a round-robin tour-
nament and found DeepSeek-R1 to have the highest win-rate: Qwen 2.5 (26.6%), Llama 3
(30.0%), and Deepseek-R1 (43.3%). Unfortunately, each LLMwas unable to beat humans.

Discussion
Arkhasbeenpurpose-built fromthegroundupwithadesignphilosophy thatwill feel famil-
iar to those experienced with machine learning software. It is guided by a number of core
principles: simplicity and modularity, Python-first accessibility, and seamless integration

19



with both real-world and simulated robotic systems. With its flexible, distributed archi-
tecture and lightweight communication layer, Ark enables reliable coordination of sensors,
actuators, and AImodels across a wide range of robotic embodiments. It offers researchers
and developers a robust and customizable framework for rapidly prototyping, deploying,
and iterating on real-world robotic systems.

Througha series of use-cases, Arkhasbeenvalidatedon several tasks important to robot
learning research; from dexterous manipulation with expert-coded policies to language-
conditioned visuomotor control powered by state-of-the-art foundation models. These
implementations demonstrate Ark’s role not only as an interface, but as a catalyst for ad-
vancing research in embodied AI. Its unified environment abstraction, standardized data
pipelines, and native support for machine learning workflows enable teams to transition
smoothly from simulation to real-world hardware, and from prototyping to full deploy-
ment.

RelatedWork
Over the years, several robotics frameworks have been developed to address different as-
pects of robot control, each with varying levels of modularity, language support, and real-
time capabilities. We provide a comparison between these different robotic frameworks
can be seen in Table 1. The comparison points in the table cover several points in each
column. Python: indicates if Python is a supported language. C/C++: indicates if C/C++
are supported languages. Gym: indicates if the main user interface is designed to align
with OpenAI Gym (Gymnasium). IL: means if imitation learning algorithms are directly
integrated into the framework. RL: means if reinforcement learning algorithms are directly
integrated into the framework (whilst Ark currently does not support RL, in the future we
plan to implement this functionality). Sim: indicates whether simulators are integrated in
the framework. ROS Dep: indicates if ROS is a dependency of the framework, we see this
as a negative attribute. ROS Con: indicates whether an optional ROS connection is pro-
vided (e.g., in our case, weprovide theROS-ArkBridge). PubSub: indicates if the framework
implements a modular publisher-subscriber networking approach. Sim-Real: indicates if
specific switching mechanisms exist to switch between simulation and reality. Pip: indi-
cates whether the framework is installable using only pip. Data tools: indicates whether
tools are provided off-the-shelf for data collection/processing. Inspection tools: indicates
whether tools are provided off-the-shelf for inspection and debugging. Limited Embod: in-
dicates if the framework limits the user to a number of specific embodiments, this is a neg-
ative point.

YARP is a peer-to-peer communication framework focused on modularity and perfor-
mance, primarily used in humanoid and legged robotics like iCub andMIT Cheetah. How-
ever, its ecosystem is limited by exclusive support for C++.

LCM, on its own, offers a lightweight publish-subscribe model optimized for low-
latency, high-bandwidthmessagingandhasbroad language support. Whilehighly effective
for communication, it provides only the messaging layer, requiring additional infrastruc-
ture for tasks such as system coordination, simulation integration, and machine learning
workflows–gaps that Ark addresses.

OROCOS provides real-time libraries for control, kinematics, and filtering, with strong
deterministic guarantees via CORBA integration–but it leaves much of the broader system

20



design to the user.
ROS 1, once the de facto standard for robotics development and now officially end-of-

life, offered a rich ecosystemof reusable tools, libraries, and drivers that greatly accelerated
prototyping and system integration. However, it also suffered from several architectural
limitations, including a lack of built-in security and poor reliability over lossy networks.
Since Ark is currently focused on research rather than commercial deployment, security
is not a primary concern at this stage. Additionally, switching between real and simulated
environments in ROS 1 was not seamless and often required users to implement custom,
ad hoc solutions.

In contrast to the frameworks/libraries mentioned above, Ark is designed to support
modern machine learning-driven robotics. It promotes modularity and reusability but re-
moves unnecessary complexity by providing aPython-first, lightweight, anddistributed ar-
chitecture. Unlike frameworks like YARP or OROCOS that focus on specific layers of the
stack, Ark offers end-to-end integration–from low-level hardware communication to high-
level policy control–using standardized channels and services. Itsminimal setup anddirect
compatibility with machine learning tools make it particularly well-suited for rapid itera-
tion and embodied AI research. Moreover, installing Ark is simple, it can be setup using pip
and is compatible with conda environments.

FutureWork
To better support the needs of embodied AI research, future development of Ark will focus
on two key areas: reinforcement learning (RL) infrastructure and high-fidelity simulation
capabilities.

While RL is a popular approach in modern robotics, Ark’s current infrastructure offers
only limited support for RL workflows. Upcoming enhancements will include native inte-
gration with popular RL libraries such as StableBaselines3 and RLlib, as well as support for
parallelized environment execution. These improvements will enable researchers to train,
evaluate, anddeployRLpolicies efficiently across both simulated andphysical robotic plat-
forms using a unified environment abstraction.

In parallel, we aim to significantly advance Ark’s simulation stack. Although Ark cur-
rently supports integration with simulators like PyBullet and MuJoCo, it lacks advanced
features such as domain randomization and differentiable physics–both crucial for robust
policy learning and sim-to-real transfer. Future releases will focus on tighter integration
with high-performance simulation backends, enablingmore accurate, scalable, and versa-
tile simulations.

Epilogue
In summary, Ark represents a significant step forward in bridging robotics and machine
learning through amodern,modular, and accessible software architecture. By lowering the
technical barriers to real-world robot deployment, whilemaintaining flexibility and exten-
sibility for advanced research, Ark empowers a new generation of researchers to develop,
test, and deploy intelligent robotic systems more efficiently. As it continues to mature–
through enhanced simulation support, deeper RL integration, and expanded tooling–Ark
is well-positioned to serve as a framework for embodied AI, catalyzing progress across the
robot learning community.

21



Table 1. Comparison of Ark versus alternatives. Note, redmark indicates a negative feature.

Py
th
on

C/
C+

+
Gy

m

IL RL Si
m

RO
SD

ep

RO
SC

on

Pu
bS
ub

Si
m
-R
ea
l

Pi
p

Da
ta
to
ol
s

In
sp
ec
t.
to
ol
s

Li
m
ite
d
Em

bo
d.

Ark ● ● ● ● ● ● ● ● ● ● ●

LeRobot ● ● ● ● ● ● ● ● ●

PyRobot ● ● ● ● ● ● ●

ROS 2 ● ● ● NA NA ● ●

Orocos ● ●

YARP ● ●

22



References
[1] Nils J. Nilsson. Shakey the robot. SRI AI Center Technical Note, 1984.

[2] Richard Paul. Robot manipulators: Mathematics, programming, and control. In Arti-
ficial Intelligence Center, 1972.

[3] R. J. Popplestone, A. P. Ambler, and I. Bellos. Rapt: A language for describing assem-
blies. Industrial Robot: An International Journal, 5(3):131–137, 1978. ISSN 0143-991X.
doi: 10.1108/eb004501. URL https://doi.org/10.1108/eb004501.

[4] Peter I Corke. A robotics toolbox for matlab. IEEE Robotics & AutomationMagazine, 3
(1):24–32, 2002.

[5] Brian Gerkey, Richard T. Vaughan, and Andrew Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. In Proceedings of the Interna-
tional Conference on Advanced Robotics (ICAR), 2003.

[6] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, Andrew Y Ng, et al. ROS: an open-source robot operating system. In ICRA
workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

[7] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, 2015. ISSN 1476-4687. doi: 10.1038/nature14539. URL https://doi.org/
10.1038/nature14539.

[8] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representa-
tions by back-propagating errors. Nature, 323(6088):533–536, 1986. ISSN 1476-4687.
doi: 10.1038/323533a0.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-
putation, 9(8):1735–1780, 11 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.
URL https://doi.org/10.1162/neco.1997.9.8.1735.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017.

[12] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya,
Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shya-
mal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Bal-
tescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine,

23

https://doi.org/10.1108/eb004501
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1162/neco.1997.9.8.1735


Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Made-
laine Boyd, Anna-Luisa Brakman, Greg Brockman, TimBrooks,Miles Brundage, Kevin
Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson,
Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, HyungWon
Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas
Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling,
Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fe-
dus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie
Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross,
Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain,
Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino
Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar
Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, JongWook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic,
Gretchen Krueger, Vishal Kuo,Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Le-
ung, Daniel Levy, ChakMing Li, Rachel Lim,Molly Lin, Stephanie Lin,Mateusz Litwin,
Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Man-
ning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake Mc-
Neil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko,
Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira
Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind
Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe, Jakub Pa-
chocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos,Mikhail Pavlov, Andrew Peng, AdamPerelman, Fil-
ipe de Avila Belbute Peres,Michael Petrov, Henrique Ponde deOliveira Pinto,Michael,
Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Ray-
mond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt,
David Schnurr, John Schulman,Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica
Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jor-
dan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Stau-
dacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak,
Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, BenWang,
JonathanWard, JasonWei, CJWeinmann, AkilaWelihinda, PeterWelinder, Jiayi Weng,
Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah
Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah
Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Mar-

24



vin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret
Zoph. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

[13] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang,
Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu,
YuWu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
BingxuanWang, BochaoWu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun
Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han
Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu,
Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Jun-
jie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige
Gao, KangGuan, KexinHuang, Kuai Yu, LeanWang, LecongZhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui
Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shan-
huang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan,
S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wen-
qin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang
Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen
Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yao-
hui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang,
Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan
Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, YanpingHuang, Yaohui Li, Yi Zheng, Yuchen
Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli
Sha, Zhe Fu, ZheanXu, ZhendaXie, ZhengyanZhang, ZhewenHao, ZhichengMa, Zhi-
gang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-
r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

[14] O. Khatib. A unified approach formotion and force control of robotmanipulators: The
operational space formulation. IEEE Journal on Robotics and Automation, 3(1):43–53,
1987. doi: 10.1109/JRA.1987.1087068.

[15] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for trajectory opti-
mization of rigid bodies through contact. The International Journal of Robotics Re-
search, 33(1):69–81, 2014. doi: 10.1177/0278364913506757. URLhttps://doi.org/
10.1177/0278364913506757.

[16] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burch-
fiel, Russ Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learn-

25

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2501.12948
https://doi.org/10.1177/0278364913506757
https://doi.org/10.1177/0278364913506757


ing via action diffusion. The International Journal of Robotics Research, 0(0):
02783649241273668, 2024. doi: 10.1177/02783649241273668. URL https://doi.
org/10.1177/02783649241273668.

[17] Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn,
Niccolo Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim
Jones, Liyiming Ke, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl
Pertsch, LucyXiaoyangShi, JamesTanner,QuanVuong,AnnaWalling,HaohuanWang,
and Ury Zhilinsky. π0: A vision-language-action flowmodel for general robot control,
2024. URL https://arxiv.org/abs/2410.24164.

[18] Oliver Kroemer, Scott Niekum, and George Konidaris. A review of robot learn-
ing for manipulation: Challenges, representations, and algorithms. Journal of Ma-
chine Learning Research, 22(30):1–82, 2021. URL http://jmlr.org/papers/v22/
19-804.html.

[19] XuanXiao, Jiahang Liu, ZhipengWang, YanminZhou, YongQi, Shuo Jiang, BinHe, and
Qian Cheng. Robot learning in the era of foundationmodels: A survey. Neurocomput-
ing, page 129963, 2025.

[20] Aude Billard, Sylvain Calinon, Rüdiger Dillmann, and Stefan Schaal. Robot Program-
ming by Demonstration, pages 1371–1394. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2008. ISBN 978-3-540-30301-5. doi: 10.1007/978-3-540-30301-5_60. URL
https://doi.org/10.1007/978-3-540-30301-5_60.

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
torch: An imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[23] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym. 06 2016. doi: 10.48550/arXiv.1606.
01540.

[24] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, AndrewHarp, Geoffrey Irving,Michael Isard, Yangqing Jia, Rafal Joze-
fowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay

26

https://doi.org/10.1177/02783649241273668
https://doi.org/10.1177/02783649241273668
https://arxiv.org/abs/2410.24164
http://jmlr.org/papers/v22/19-804.html
http://jmlr.org/papers/v22/19-804.html
https://doi.org/10.1007/978-3-540-30301-5_60


Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

[25] William J. Dally, StephenW. Keckler, and David B. Kirk. Evolution of the graphics pro-
cessing unit (gpu). IEEEMicro, 41(6):42–51, 2021. doi: 10.1109/MM.2021.3113475.

[26] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,
Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning,
2014. URL https://arxiv.org/abs/1410.0759.

[27] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, AndrewHarp, Geoffrey Irving,Michael Isard, Yangqing Jia, Rafal Joze-
fowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. Tensorflow: Large-scale machine learning on hetero-
geneous distributed systems, 2016. URL https://arxiv.org/abs/1603.04467.

[28] Paulo Canelas, Miguel Tavares, Ricardo Cordeiro, Alcides Fonseca, and Christopher S.
Timperley. An experience report on challenges in learning the robot operating sys-
tem. In Proceedings of the 4th International Workshop on Robotics Software Engi-
neering, RoSE ’22, page 33–38, New York, NY, USA, 2023. Association for Comput-
ing Machinery. ISBN 9781450393171. doi: 10.1145/3526071.3527521. URL https:
//doi.org/10.1145/3526071.3527521.

[29] Sophia Kolak, Afsoon Afzal, Claire Le Goues, Michael Hilton, and Christopher Steven
Timperley. It takes a village tobuilda robot: Anempirical studyof the ros ecosystem. In
2020 IEEE International Conference on SoftwareMaintenance and Evolution (ICSME),
pages 430–440, 2020. doi: 10.1109/ICSME46990.2020.00048.

[30] Nicholas Roy, Ingmar Posner, Tim Barfoot, Philippe Beaudoin, Yoshua Bengio, Jean-
netteBohg,OliverBrock, IsabelleDepatie,Dieter Fox,DanKoditschek, TomasLozano-
Perez, Vikash Mansinghka, Christopher Pal, Blake Richards, Dorsa Sadigh, Stefan
Schaal, Gaurav Sukhatme, Denis Therien, Marc Toussaint, andMichiel Van de Panne.
Frommachine learning to robotics: Challenges and opportunities for embodied intel-
ligence, 2021. URL https://arxiv.org/abs/2110.15245.

[31] Christopher E Mower, Yuhui Wan, Hongzhan Yu, Antoine Grosnit, Jonas Gonzalez-
Billandon, Matthieu Zimmer, Jinlong Wang, Xinyu Zhang, Yao Zhao, Anbang Zhai,
et al. ROS-LLM: A ROS framework for embodied ai with task feedback and structured
reasoning. arXiv preprint arXiv:2406.19741, 2024.

[32] Guowei Lan, Kaixian Qu, René Zurbr ugg, Changan Chen, Christopher E. Mower,
Haitham Bou-Ammar, and Marco Hutter. Experience is the best teacher: Grounding
vlms for robotics through self-generatedmemory. Under review, 2025.

27

https://www.tensorflow.org/
https://arxiv.org/abs/1410.0759
https://arxiv.org/abs/1603.04467
https://doi.org/10.1145/3526071.3527521
https://doi.org/10.1145/3526071.3527521
https://arxiv.org/abs/2110.15245


[33] Yi Li, YuquanDeng, JesseZhang, Joel Jang,MariusMemmel, RaymondYu,CaelanReed
Garrett, Fabio Ramos, Dieter Fox, Anqi Li, et al. Hamster: Hierarchical action models
for open-world robot manipulation. arXiv preprint arXiv:2502.05485, 2025.

[34] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Com-
mun. ACM, 15(12):1053–1058, December 1972. ISSN 0001-0782. doi: 10.1145/361598.
361623. URL https://doi.org/10.1145/361598.361623.

[35] M. Montemerlo, N. Roy, and S. Thrun. Perspectives on standardization in mobile
robot programming: the carnegie mellon navigation (carmen) toolkit. In Proceedings
2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)
(Cat. No.03CH37453), volume 3, pages 2436–2441 vol.3, 2003. doi: 10.1109/IROS.2003.
1249235.

[36] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William Woodall.
Robot operating system 2: Design, architecture, and uses in thewild. Science Robotics,
7(66):eabm6074, 2022. doi: 10.1126/scirobotics.abm6074. URL https://www.
science.org/doi/abs/10.1126/scirobotics.abm6074.

[37] Albert S. Huang, Edwin Olson, and David C. Moore. Lcm: Lightweight communica-
tions andmarshalling. In 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 4057–4062, 2010. doi: 10.1109/IROS.2010.5649358.

[38] Jack Collins, Shelvin Chand, Anthony Vanderkop, and David Howard. A review of
physics simulators for robotic applications. IEEE Access, 9:51416–51431, 2021. doi:
10.1109/ACCESS.2021.3068769.

[39] RemiCadene, SimonAlibert, Alexander Soare, QuentinGallouedec, Adil Zouitine, and
Thomas Wolf. Lerobot: State-of-the-art machine learning for real-world robotics in
pytorch. https://github.com/huggingface/lerobot, 2024.

[40] Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Alwala, Dhiraj Gandhi, Lerrel
Pinto, Saurabh Gupta, and Abhinav Gupta. Pyrobot: An open-source robotics frame-
work for research and benchmarking. arXiv preprint arXiv:1906.08236, 2019.

[41] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal. Survey: Robot
programming by demonstration. Springer handbook of robotics, pages 1371–1394,
2008.

[42] ArneMuxfeldt, Jan-Henrik Kluth, andDaniel Kubus. Kinesthetic teaching in assembly
operations–a user study. In Simulation, Modeling, and Programming for Autonomous
Robots: 4th International Conference, SIMPAR 2014, Bergamo, Italy, October 20-23,
2014. Proceedings 4, pages 533–544. Springer, 2014.

[43] Haozhuo Li, Yuchen Cui, and Dorsa Sadigh. How to train your robots? the impact
of demonstrationmodality on imitation learning, 2025. URL https://arxiv.org/
abs/2503.07017.

28

https://doi.org/10.1145/361598.361623
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://github.com/huggingface/lerobot
https://arxiv.org/abs/2503.07017
https://arxiv.org/abs/2503.07017


[44] Daniel Rakita, Bilge Mutlu, and Michael Gleicher. Remote telemanipulation with
adapting viewpoints in visually complex environments. In Proceedings of Robotics:
Science and Systems, FreiburgimBreisgau, Germany, 2019. doi: 10.15607/RSS.2019.XV.
068.

[45] Christopher E. Mower, Wolfgang Merkt, Aled Davies, and Sethu Vijayakumar. Com-
paring alternatemodes of teleoperation for constrained tasks. In 2019 IEEE 15th Inter-
nationalConference onAutomationScience andEngineering (CASE), pages 1497–1504,
2019. doi: 10.1109/COASE.2019.8843265.

[46] Christopher Mower. An optimization-based formalism for shared autonomy in dy-
namic environments. 2022.

[47] Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained
bimanual manipulation with low-cost hardware, 2023. URL https://arxiv.org/
abs/2304.13705.

[48] Helong Huang, Christopher E. Mower, Guowei Huang, Sarthak Das, Magnus Dierk-
ing, Guangyuan Luo, Kai Tan, Xi Chen, Yehai Yang, Yingbing Chen, Yiming Zeng,
Yinchuan Li, Zhanpeng Zhang, Shuang Wu, Yingxue Zhang, Weichao Qiu, Tongtong
Cao, Yuzheng Zhuang, Guangjian Tian, Jianye Hao, Jun Wang, Haitham Bou-Ammar,
andXingyueQuan. Openpyro-a1: An openpython-based low-cost bimanual robot for
embodied ai. https://openpyro-a1.github.io/, 2025. Technical report.

[49] Sebastian Thrun, Michael Montemerlo, Daphne Koller, BenWegbreit, Juan Nieto, and
Eduardo Nebot. Fastslam: An efficient solution to the simultaneous localization and
mapping problem with unknown data association. Journal of Machine Learning Re-
search (JMLR), 2004.

[50] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Flo-
rence, andAndyZeng. Code aspolicies: Languagemodel programs for embodied con-
trol. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages
9493–9500. IEEE, 2023.

29

https://arxiv.org/abs/2304.13705
https://arxiv.org/abs/2304.13705
https://openpyro-a1.github.io/

